(2006•成都)已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P. (1)设DE=m(0<m<12),试用含m的代数式表示的值; (2)在(1)的条件下,当时,求BP的长. |
|
(2006•成都)已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点F,连接BD. (1)求证:△ACG∽△DBG; (2)求证:AC2=AG•AB; (3)若⊙A,⊙O的直径分别为,15,且CG:CD=1:4,求AB和BD的长. |
|
(2006•成都)如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A测得山腰上一点D的仰角为30°,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为45°,山腰点D的俯角为60度.请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值) |
|
(2006•成都)如图,已知反比例函数y=(k<0)的图象经过点A(-,m),过点A作AB⊥x轴于点B,且△AOB的面积为. (1)求k和m的值; (2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求∠ACO的度数和|AO|:|AC|的值. |
|
(2006•成都)已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF. (1)求证:AF=CE; (2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论. |
|
(2006•成都)小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负. (1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平. |
|
(2008•娄底)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1). (1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标; (3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形. |
|
(2006•成都)解答下列各题: (1)计算:2tan60°-()-1+(-2)2×(-1)-|-|; (2)先化简,再求值:(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=-; (3)解方程:. |
|
(2006•成都)如图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的函数关系.请根据这个行驶过程中的图象填空: 汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/小时;汽车的速度为 千米/小时;汽车比电动自行车早 小时到达B地. |
|
(2006•成都)如图,在等腰梯形ABCD中,AD∥BC,AB≠AD,对角线AC,BD相交于点O.如下四个结论: ①梯形ABCD是轴对称图形; ②∠DAC=∠DCA; ③△AOB≌△DOC; ④△AOD∽△BOC.请把其中正确结论的序号填在横线上: . |
|