(2010•贵阳)小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:米):3.6,3.8,4.2,4.0,3.8,4.0.那么这组数据的( ) A.众数是3.9米 B.中位数是3.8米 C.极差是0.6米 D.平均数是4.0米 |
|
(2006•太原)如图,△ABC与△A1B1C1关于直线l对称,将△A1B1C1向右平移得到△A2B2C2,由此得出下列判断:(1)AB∥A2B2;(2)∠A=∠A2;(3)AB=A2B2.其中正确的是( ) A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(2)(3) |
|
(2006•太原)如图所示是学校对九年级的100名学生学习数学的兴趣进行问卷调查的结果,被调查的学生中对学习数学很感兴趣的有( ) A.40人 B.30人 C.20人 D.10人 |
|
(2009•成都)已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为( ) A.1:2 B.1:4 C.2:1 D.4:1 |
|
(2006•太原)不等式组:的解集为( ) A.x>2 B.x>1 C.x<2 D.1<x<2 |
|
(2013•大连)-2的相反数是( ) A.-2 B.- C. D.2 |
|
(2006•汾阳市)如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围; (3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由. |
|
(2006•汾阳市)如图,点E在正方形ABCD的边CD上运动,AC与BE交于点F. (1)如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比; (2)如图2,当点E运动到CE:ED=2:1时,求△ABF与四边形ADEF的面积之比; (3)当点E运动到CE:ED=3:1时,写出△ABF与四边形ADEF的面积之比;当点E运动到CE:ED=n:1(n是正整数)时,猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写出计算过程); (4)请你利用上述图形,提出一个类似的问题 |
|
(2006•汾阳市)有一块表面是咖啡色、内部是白色、形状是正方体的烤面包.小明用刀在它的上表面、前面面和右侧表面沿虚线各切两刀(如图1),将它切成若干块小正方体形面包(如图2). (1)小明从若干块小面包中任取一块,求该块面包有且只有两个面是咖啡色的概率; (2)小明和弟弟边吃边玩.游戏规则是:从中任取一块小面包,若它有奇数个面为咖啡色时,小明赢;否则,弟弟赢.你认为这样的游戏规则公平吗?为什么?如果不公平,请你修改游戏规则,使之公平. |
|
(2006•汾阳市)下表是我国近几年的进口额与出口额数据(近似值)统计表.
(2)计算2000年至2002年出口额年平均增长率(≈1.15); (3)观察折线图,你还能得到什么信息,写出两条. |
||||||||||||||||||||||