(2006•泰安)如图,是一同学骑自行车出行时所行路程s(km)与时间t(min)的函数关系图象,从中得到的正确信息是( ) A.整个行程的平均速度为km/h B.前二十分钟的速度比后半小时的速度慢 C.前二十分钟的速度比后半小时的速度快 D.从起点到达终点,该同学共用了50min |
|
(2006•泰安)如图,是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,当横板AB的A端着地时,测得∠OAC=α,则在玩跷跷板时,上下最大可以转动的角度为( ) A.α B.2α C.90°-α D.90°+α |
|
(2006•泰安)下列轴对称图形中,对称轴最多的是( ) A. B. C. D. |
|
(2006•泰安)下列运算正确的是( ) A.(a+b)(a-b)=a2+b2 B.(a+3)2=a2+9 C.a2+a2=2a4 D.(-2a2)2=4a4 |
|
(2006•泰安)我国对农村义务教育阶段贫困家庭的学生实行“两免一补”政策,2005年至2007年三年内国家财政将安排约227亿元资金用于“两免一补”,这项资金用科学记数法表示为( ) A.2.27×109元 B.227×108元 C.22.7×109元 D.2.27×1010元 |
|
(2006•泰安)(1)如图①,⊙O的弦CE垂直于直径AB,垂足为点G,点D在上,作直线CD,ED,与直线AB分别交于点F,M,连接OC,求证:OC2=OM•OF; (2)把(1)中的“点D在上”改为“点D在上”,其余条件不变(如图②),试问:(1)中的结论是否成立?并说明理由. |
|
(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC. (1)求直线BC的解析式; (2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由. |
|
(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度; (2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为______;∠APB的大小为______; (3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为______;∠APB的大小为______. |
|
(2006•泰安)某商场销售某种商品,第一个月将此商品的进价提高百分之25作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价提高百分之10作为销售价,第二个月比第一个月增加了80件,并且第二个月比第一个月多获利400元.问此商品的进价每件是多少元?商场第二个月共销售商品多少件? |
|
(2006•泰安)如图,矩形ABCD的对角线交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,连接AF,CE. (1)求证:四边形AECF是平行四边形; (2)若∠BAD的平分线与FC的延长线交于点G,则△ACG是等腰三角形吗?并说明理由. |
|