(2006•泰安)我国对农村义务教育阶段贫困家庭的学生实行“两免一补”政策,2005年至2007年三年内国家财政将安排约227亿元资金用于“两免一补”,这项资金用科学记数法表示为( ) A.2.27×109元 B.227×108元 C.22.7×109元 D.2.27×1010元 |
|
(2006•日照)阅读下面的材料: 如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D. 求证:AP•AC+BP•BD=AB2. 证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°, ∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上. 由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA, 所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2. 当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么: (1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么? (2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来. |
|
(2006•日照)日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)
(1)求x的取值范围; (2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少? |
|||||||||||||
(2006•日照)如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3. (1)求抛物线的表达式及P点的坐标; (2)求△ACP的面积S△ACP. |
|
(2006•日照)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问: (1)甲、乙两个工程队单独完成该工程各需多少天? (2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元? |
|
(2006•日照)如图,“五•一”期间在某商贸大厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上,小明在四楼D点测得条幅端点A的仰角为30°,测得条幅端点B的俯角为45°;小雯在三楼仰角为45°,测得条幅端点B的俯角为30°.若设楼层高度CD为3米,请你根据小明和小雯测得的数据求出条幅AB的长. (结果精确到个位,参考数据=1.73) |
|
(2006•日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证: (1)AE=BF; (2)AE⊥BF. |
|
(2006•日照)下表是某市4所中学举行男子足球单循环赛的成绩登记表.表中①与②表示的是同一场比赛,在这场比赛中一中进了3个球,三中进了2个球,即一中以3:2胜三中,或者说三中以2:3负于一中,其余依此类推.按照比赛规则胜一场得3分,平一场得1分,负一场得0分.
(2)求各场比赛的平均进球数; (3)求各场比赛进球数的众数和中位数. |
||||||||||||||||||||||||||
(2006•日照)德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数). 根据前五行的规律,可以知道第六行的数依次是: , , , , , . |
|
(2006•日照)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是 . |
|