(2006•济宁)随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:有两种配货方案(整箱配货):
方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店______箱,乙店______箱;B种水果甲店______箱,乙店______箱. (1)如果按照方案一配货,请你计算出经销商能盈利多少元; (2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多; (3)在甲、乙两店各配货10箱,且保证乙店盈利不少于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少? |
||||||||||
(2006•济宁)直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下: 请你用上面图示的方法,解答下列问题: (1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形; (2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形. |
|
(2006•济宁)如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N. (1)求证:BA•BM=BC•BN; (2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值. |
|
(2008•娄底)某农机公司为更好地服务于麦收工作,按图1给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图. 请你根据图中提供的信息,解答以下问题: (1)求该农机公司从丙厂购买农机的台数; (2)求该农机公司购买的150台农机中优等品的台数; (3)如果购买的这批产品质量能代表各厂的产品质量状况,那么: ①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么? ②甲厂2005年生产的360台产品中的优等品有多少台? |
|
(2006•济宁)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:
(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式; (3)如果你需要的鞋长为26cm,那么应该买多大码的鞋? |
|||||||||||
(2006•济宁)解下列不等式组,并在数轴上表示出该不等式组的解集.. |
|
(2006•济宁)如图,以BC为直径,在半径为2的圆心角为90°的扇形内作半圆,交弦AB于点D,连接CD,则阴影部分的面积是( ) A.π-1 B.π-2 C.π-1 D.π-2 |
|
(2006•济宁)如图,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2按逆时针方向旋转90°,则旋转后A3的坐标为( ) A.(-2,1) B.(1,1) C.(-1,1) D.(5,1) |
|
(2006•济宁)反比例函数y=与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图象大致为( ) A. B. C. D. |
|
(2006•成都)如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( ) A.5个 B.6个 C.7个 D.8个 |
|