|
若弧AB的长为所对的圆的直径长,则弧AB所对的圆周角的度数为 .
|
|
|
一条弧所对的圆心角是
|
|
|
如图,Rt△ABC中,AC=8, BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.
|
|
|
阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积. ∵S△ABC =S△OAB +S△OBC +S△OCA 又∵S△OAB = ∴S△ABC = = (1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径; (2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).
|
|
|
如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,如果AF=2,BD=7,CE=4. (1)求△ABC的三边长; (2)如果P为
|
|
|
如图,已知正三角形ABC的边长为2a.
(1)求它的内切圆与外接圆组成的圆环的面积; (2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积; (3)将条件中的“正三角形”改为“正方形”“正六边形”,你能得出怎样的结论? (4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环面积.
|
|
|
如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于( )
A.
|
|
|
如图,在半径为R的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是( ) A.(
|
|
|
如图,△ABC中,∠A=m°. (1)如图(1),当O是△ABC的内心时,求∠BOC的度数; (2)如图(2),当O是△ABC的外心时,求∠BOC的度数; (3)如图(3),当O是高线BD与CE的交点时,求∠BOC的度数.
|
|
|
如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是
|
|
