已知Rt△ABC中,∠B=90°. (1)根据要求作图(尺规作图,保留作图痕迹,不写画法). ①作∠BAC的平分线AD交BC于D; ②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H; ③连接ED. (2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形: △______∽△______;△______≌△______. 并选择其中一对加以证明. |
|
如图,在△ABC的外接圆O中,D是的中点,AD交BC于点E,连接BD. (1)列出图中所有相似三角形; (2)连接DC,若在上任取一点K(点A,B,C除外),连接CK,DK,DK交BC于点F,DC2=DF•DK是否成立?若成立,给出证明;若不成立,举例说明. |
|
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F. (1)判断BE是否平分∠ABC,并说明理由; (2)若AE=6,BE=8,求EF的长. |
|
已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G. (1)求证:AC2=AG•AF; (2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由. |
|
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC2=DE•DA是否成立?若成立,给出证明;若不成立,举例说明. |
|
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB. (1)求证:△PAC与△PDB是否相似______(填“是”或“否”); (2)当=______时,=4. |
|
半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,点P在上运动,过点C作CP的垂线,与PB的延长线交于点Q. (1)当点P与点C关于AB对称时,求CQ的长; (2)当点P运动到的中点时,求CQ的长; (3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长. |
|
如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD. (1)求证:AB=AC; (2)如果∠ABC=60°,⊙O的半径为1,且P为的中点,求AD的长. |
|
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E. (1)求证:AD2=DE•DB; (2)若BC=,CD=,求DE的长. |
|
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.求弦AD,CD的长. |
|