已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度. (1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长; (2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明. |
|
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G. (1)求证:△BEF是等边三角形; (2)若BA=4,CG=2,求BF的长. |
|
如图,点C、D在线段AB上,△PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB; (2)当△ACP∽△PDB时,求∠APB的度数. |
|
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD. (1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值; (3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数) |
|
如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题: (1)找出一个等腰三角形;(不包括△ABC) (2)找出三对相似三角形;(不包括全等三角形) (3)找出两对全等三角形,并选出一对进行证明. |
|
如图,等腰三角形ABC中,若∠A=∠B=∠DPE, (1)求证:△APD∽△BEP; (2)若AP=1,PB=2,BE=,试求出AD的长. |
|
如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论: ①BD是∠ABC的角平分线; ②△BCD是等腰三角形; ③△ABC∽△BCD; ④△AMD≌△BCD. (1)判断其中正确的结论是哪几个? (2)从你认为是正确的结论中选一个加以证明. |
|
如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE. (1)求证:∠CBE=36°; (2)求证:AE2=AC•EC. |
|
两块含30°角的相同直角三角板,按如图位置摆放,使得两条相等的直角边AC、C1A1共线. (1)问图中有多少对相似三角形,多少对全等三角形?并将它们写出来; (2)选出其中一对全等三角形进行证明.(△ABC≌△AlBlC1除外) |
|
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n. (1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明; (2)求m与n的函数关系式,直接写出自变量n的取值范围; (3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2; (4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由. |
|