已知:如图,在△ABC中,∠BAC=120°,AB=AC,BC=4,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论. |
|
已知:三角形ABC内接于⊙O,过点A作直线EF. (1)如图1,AB为直径,要使得EF是⊙O的切线,还需添加的条件是?(只须写出三种情况) (2)如图2,AB为非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线. |
|
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆. 求证:(1)AC是⊙D的切线; (2)AB+EB=AC. |
|
如图,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°.求证:DC是⊙O的切线. |
|
如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD. (1)求证:AD是⊙O的切线; (2)如果AB=2,AD=4,EG=2,求⊙O的半径. |
|
如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE. (1)求证:PC是⊙O的切线; (2)若OE:EA=1:2,PA=6,求⊙O的半径; (3)求sin∠PCA的值. |
|
如图,AO是△ABC的中线,⊙O与AB边相切于点D. (1)要使⊙O与AC边也相切,应增加条件______(任写一个); (2)增加条件后,请你说明⊙O与AC边相切的理由. |
|
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由. |
|
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F. 求证: (1)AD=BD; (2)DF是⊙O的切线. |
|
如图,⊙O的直径AB=4,∠ABC=30°,BC=,D是线段BC的中点. (1)试判断点D与⊙O的位置关系,并说明理由; (2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线. |
|