抛物线y=(x-3)2+2的对称轴是( ) A.直线x=-3 B.直线x=-2 C.直线x=2 D.直线x=3 |
|
反比例函数y=-的图象位于( ) A.第一、三象限 B.第二、四象限 C.第一、四象限 D.第二、三象限 |
|
台州高速三门段某处一交警10:05接到上司命令,要求他马上到前方12km处拦截一冲卡的犯罪嫌疑人(最大速度匀速逃跑),此时警车速度指针为30千米/小时,里程表示数为4357千米,他马上开足马力,几分钟后速度指针为120千米/小时(最大车速,此后保持匀速),里程表示数为4362千米,若这段时间汽车的速度是匀速增加的,请问: (1)警车匀加速用了几分钟?警车速度每分钟增加多少千米/小时? (2)里程表显示4360km时,是几点几分?(精确到分) (3)若要求他在半小时内追上嫌疑人,则嫌疑人的最大车速为多少? |
|
某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏以超出进价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价. |
|
是否存在这样的非负整数m,使得关于x的一元二次方程m2x2-(2m-7)x+1=0有两个实数根.若存在,请求出m的值,并求解此方程;若不存在,请说明理由. |
|
如图,在Rt△ABC中,点P由C点出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,已知AC=4cm,BC=12cm, (1)若记Q点的移动时间为t,试用含有t的代数式表示Rt△PCQ与四边形PQBA的面积; (2)当P、Q处在什么位置时,四边形PQBA的面积最小,并求最小值. |
|
在一块长16m、宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,下面分别是小明和小颖的设计方案. 小明说:我的设计方案如图1,其中花园四周小路的宽度相等.通过解方程,我得到小路的宽为2m或12m. 小颖说:我的设计方案如图2,其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x(精确到0.1m). (3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明. |
|
阅读下面的例题: 解方程:x2-|x|-2=0 【解析】 (1)当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去). (2)当x<0时,原方程化为x2+x-2=0,解得:x1=1(不合题意,舍去),x2=-2 ∴原方程的根是x1=2,x2=-2. 请参照例题解方程x2-|x-3|-3=0,则此方程的根是______. |
|
(1)计算:; (2)解方程(x+3)2-2x(x+3)=0; (3)解方程x2-3x-2=2; (4)已知:x=,求代数式x2+4x+13的值. |
|
如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,且标注的数字相同的不超过2个,则A的取值范围是 . |
|