下列图形中,既是中心对称又是轴对称图形的是( ) A. B. C. D. |
|
定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点. (1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则: ①b的值等于______; ②四边形ABCD为( ) A、平行四边形;B、矩形;C、菱形;D、正方形. (2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c-1),求△ABD的面积; (3)如图3,若F1:y=x2-x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值. |
|
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明). |
|
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点. (1)求等腰梯形DEFG的面积; (2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2). 探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由; 探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式. |
|
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9. (1)求该抛物线的解析式; (2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高; (3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围______. |
|
如图,直线y1=-x-2交x轴于点A,交y轴于点B,抛物线y2=ax2+bx+c的顶点为A,且经过点B. (1)求该抛物线的解析式; (2)求当y1≥y2时x的值. |
|
如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位. (1)作△ABC关于点P的对称图形△A′B′C′; (2)再把△A′B′C′,绕着C'逆时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′.(不要求写画法) |
|
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC. 求证:CD=CE. |
|
某药品经过两次降价,每瓶零售价由100元降为81元,已知两次降价的百分率相同.求每次降价的百分率. |
|
(1)计算:; (2)解方程:x2+4x+2=0. |
|