给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( ) A.0个 B.1个 C.2个 D.3个 |
|
如图,AB是⊙O的直径,P是AB延长线上的一点,PC切⊙O于点C,PC=3,PB=1,则⊙O的半径等于( ) A. B.3 C.4 D. |
|
小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差( ) A.增大 B.不变 C.减小 D.无法确定 |
|
下列各式中,与是同类二次根式的是( ) A. B. C. D. |
|
方程x2=5x的根是( ) A.x=5 B.x=0 C.x1=0,x2=5 D.x1=0,x2=-5 |
|
已知等腰三角形的一个底角等于30°,则这个等腰三角形的顶角等于( ) A.150° B.120° C.75° D.30° |
|
如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? |
|
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式. (2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? |
|
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点. (1)求出m的值并画出这条抛物线; (2)求它与x轴的交点和抛物线顶点的坐标; (3)x取什么值时,抛物线在x轴上方? (4)x取什么值时,y的值随x值的增大而减小? |
|
如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题: (1)抛物线y2的顶点坐标______; (2)阴影部分的面积S=______; (3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式. |
|