如图,在图1所示的正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r,扇形的半径为R,则圆的半径与扇形的半径之间的关系为( ) A.R=2r B.R=r C.R=3r D.R=4r |
|
如图,PA,PB为⊙O的切线,A,B分别为切点,∠APB=60°,点P到圆心O的距离OP=2,则⊙O的半径为( ) A. B.1 C. D.2 |
|
如图,点A、B、C都在00上,若∠C=40°,则∠AOB的度数为( ) A.40° B.50° C.80° D.140° |
|
如图,把一个长方形的纸片对折两次,然后剪下一个角,把剪下的这个角展开,若得到一个锐角为60°的菱形,则剪口与折痕所成的角α的度数应为( ) A.15°或30° B.30°或45° C.45°或60° D.30°或60° |
|
如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为( )cm2. A.24-π B.π C.24-π D.24-π |
|
Rt△AOB在平面直角坐标系内的位置如图所示,点O为原点,点A(0,8),点B(6,0),点P在线段AB上,且AP=6. (1)求点P的坐标; (2)x轴上是否存在点Q,使得以B、P、Q为顶点的三角形与△AOB相似.若存在,请求出点Q的坐标,若不存在,请说明理由. |
|
某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元,设生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费为2万元,第2年维修,保养费为4万元. (1)求当x=2时,y的值; (2)求y关于x的函数解析式; (3)求投资生产几年后,该企业可盈利56万元. |
|
如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积. |
|
某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2.求: (1)该工程队第一天拆迁的面积; (2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数. |
|
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P(偶数); (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少? |
|