已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题: (1)当t为何值时,PQ∥BC; (2)设△AQP的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由; (4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. |
|
姚明是我国著名的篮球运动员,他在2005-2006赛季NBA常规赛中表现非常优异.下面是他在这个赛季中,分期与“超音速队”和“快船队”各四场比赛中的技术统计.
(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定? (3)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5十平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好? |
||||||||||||||||||||||||||||||||||||||||||
阅读下面的例题: 解方程:x2-|x|-2=0 【解析】 (1)当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去). (2)当x<0时,原方程化为x2+x-2=0,解得:x1=1(不合题意,舍去),x2=-2 ∴原方程的根是x1=2,x2=-2. 请参照例题解方程x2-|x-3|-3=0,则此方程的根是______. |
|
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E, (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明. |
|
国庆长假期间,徐州彭城旅行社为吸引市民组团去安徽黄山风景区旅游,推出了如下收费标准: 垞城煤矿工会组织今年的劳模旅游,共支付给彭城旅行社旅游费用27 000元,请问我矿这次共有多少劳模去黄山旅游? |
|
两组邻边分别相等的四边形我们称它为筝形. 如图,在筝形ABCD中,AB=AD,BC=DC,AC与BD相交于点O. (1)下列判断正确的有______(填序号). ①AC、BD互相垂直;②AC、BD互相平分; ③AC平分∠BAD、∠BCD;④BD平分∠ABD、∠ADC. (2)求证:△ABC≌△ADC. |
|
已知关于x的方程x2-2(m+1)x+m2=0 (1)当m取何值时,方程有两个实数根; (2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根. |
|
已知关于x的一元二次方程x2-mx-2=0…① (1)若x=-1是方程①的一个根,求m的值和方程①的另一根; (2)对于任意实数m,判断方程①的根的情况,并说明理由. |
|
计算:. |
|
按要求解下列方程: (1)x2+x-1=0(用配方法解); (2)(x-1)2-4=0. |
|