在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=6,AD=4,求⊙O的面积.
|
|
如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于点D,E是BC边的中点,连接DE. (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由; (2)若AD、AB的长是方程x2-6x+8=0的两个根,求直角边BC的长; (3)在(2)的条件下,则图中阴影部分的面积=______
|
|
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF. (1)求证:D是BC的中点; (2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
|
|
作图题: (1)正三角形给人以“稳如泰山”的美感,它具有独特的对称性,请你用三种不同的分割方法,将下列三个正三角形分别分割成四个等腰三角形.(在图中画出分割线,并标出必要的角的度数)
(2)如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求尺规作图,保留作图痕迹,不必写出作法和证明)
|
|
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP= .
|
|
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在A′处,若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系 .
|
|
过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为 cm.
|
|