如图,△ABC内接于⊙O,AE是∠BAC外角∠CAD的平分线,交BC延长线于点E,延长EA交⊙O于点F,连接BF,求证:FB2=FA•FE. |
|
某校学生会准备调查初中九年级同学每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到操场上去询问参加锻炼的同学”;丙同学说:“我到九年级每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理; (2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将其补充完整;(注:图2中相邻两虚线形成的圆心角为30度.) (3)若该校初中九年级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大20分钟钟的人数,并根据调查情况向学生会提出一条建议. |
|
如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少? (2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率. |
|
已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根, (1)求证:无论k为何值时,方程总有两个不相等的实数根; (2)k为何值时,△ABC是以BC为斜边的直角三角形; (3)k为何值时,△ABC是等腰三角形,并求△ABC的周长. |
|
推理运算:二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0). (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标; (3)填空:把二次函数的图象沿坐标轴方向最少平移______个单位,使得该图象的顶点在原点. |
|
①解方程:x (x-3)+x-3=0 ②解方程组: |
|
二次函数y=2x2-(m-1)x-2m+3中,已知当x>2时,函数值随自变量的增加而增加,则m的取值范围是 . | |
如图,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=40°,则∠ABC的大小等于 度. |
|
将抛物线y=ax2+bx+c(a≠0)向下平移3个单位,再向左平移4个单位得到抛物线y=-2x2-4x+5,则原抛物线的顶点坐标是 . | |
如图,圆锥的底面半径为3cm,母线长为6cm,那么这个圆锥的侧面积是 cm2(结果保留π). |
|