把不等式组的解集在数轴上表示出来,正确的是( ) A. B. C. D. |
|
计算:a3•a4等于( ) A.a7 B.a12 C.3a4 D.4a3 |
|
下列各数中,属于负数的是( ) A.0 B.3 C.-3 D.-(-3) |
|
如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N. (1)求抛物线的解析式. (2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由. (3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值. |
|
“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元. (1)求第一批玩具每套的进价是多少元? (2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元? |
|
如图,正方形ABCD的边长为2,以对角线BD为边作菱形BEFD,点C、E、F在同一直线上. (1)求∠EBC的度数; (2)求CE的长. |
|
如图,AB为半圆O的直径,C为半圆上一点,正方形DEFG的一边EF在AB上,另一边FG过△ABC的内切圆圆心O1,且点G在半圆弧上.设正方形DEFG的边长、半圆O的半径、⊙O1的半径分别为a、R、r. (1)若正方形DEFG的顶点D在半圆上,求a:R:r; (2)若a=10,r=4,求R的值. |
|
某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示).根据图表解答下列问题: (1)a=______,b=______; (2)这个样本数据的中位数落在第______组; (3)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,则从这50名男生中任意选一人,跳绳成绩为优秀的概率为多少? (4)若该校七年级入学时男生共有150人,请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数.
|
||||||||||||||||||||||
先化简,然后从不等组的解集中,选取一个你认为符合题意的x的值代入求值. |
|
计算:. |
|