某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是( ) A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%= D.x•(1+50%)=240×80% |
|
某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( ) A.7,7 B.8,7.5 C.7,7.5 D.8,6.5 |
|
下列计算正确的是( ) A.a2•a3=a6 B.(a+b)(a-2b)=a2-2b2 C.(ab3)2=a2b6 D.5a-2a=3 |
|
地球上的陆地面积约为149 000 000千米2,这个数用科学记数法(四舍五入保留两个有效数字)表示约为 ( ) A.1.5×108千米2 B.1.5×109千米2 C.15×107千米2 D.0.15×109千米2 |
|
水平放置的下列几何体,主视图不是长方形的是( ) A. B. C. D. |
|
下列说法正确的是( ) A.a一定是正数 B.是有理数 C.是有理数 D.平方等于自身的数只有1 |
|
如图(1),Rt△AOB中,,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC-CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO-ON以相同的速度运动,当点P到达点O时P、Q同时停止运动. (1)求OC、BC的长; (2)设△CPQ的面积为S,求S与t的函数关系式; (3)当P在OC上Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值. |
|
低碳经济作为新的发展模式,不仅是实现全球减排目标的战略选择,也是保证经济持续健康增长的良方.中国企业目前已经在多个低碳产品和服务领域取得世界领先地位,其中以可再生资源相关行业最为突出.某单位为了发展低碳经济,采取技术革新,让可再生产资源重新利用.从2011年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成一次函数关系,如图所示.月处理成本p(元)与每月再生资源y(吨)满足的函数关系p=10y2-400y+14000.每处理一吨再生资源得到的新产品的售价定为2000元. (1)求出y与x的函数关系式;按此规律,预计到2011年底,再生资源处理总量可达多少吨? (2)在不改变新产品原定售价的基础上,该单位在哪个月获得的利润最大?最大利润是多少? (3)随着人们对环保意识的增强,该单位需求的可再生资源数量受限.今年三、四月份再生资源处理量比二月份都减少了m%,该新产品的产量也随之减少,其售价都比原定售价增加了0.8m%.五月份,该单位得到国家科委的技术支持,使五月份的月处理成本比二月份降低了20%.如果该单位从三月份开始,在保持再生产资源处理量和新产品售价不变的情况下,五月份的利润与二月份利润保持一样.求m的值.(m的值精确到个位) (参考数据:,,) |
|
如图,在梯形ABCD中,∠ABC=90°,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E. (1)求证:AD=ED; (2)若AD=6,AB=18,求四边形ABFD的面积. |
|
某校八年级每周周一至周五将开展学生“第二课堂”兴趣活动,活动内容有:经典诵读、英语口语训练、校传统体育项目训练、信息技术学习共四项,每一名学生至少报一项.该年级各班学生踊跃报名参加.已知八年级二班有6个学习小组(各组人数相等),各个学习小组报名情况都相同.根据报名情况收集数据,绘制成如下统计图(不完整): (1)求该班学生人数是多少?并将该条形统计图补充完整; (2)学校将举行一年一度的“成长杯”学生篮球比赛,该班第一学习小组有2人参加了班级篮球队,他们都只报名参加了最多两项兴趣活动.请你用列表法或树状图的方法求出这两名同学恰好都是只报了1项兴趣活动的学生的概率. |
|