下列计算结果正确的是( ) A.3a-(-a)=2a B.a3×(-a)2=a5 C.a5÷a=a5 D.(-a2)3=a6 |
|
下列四个式子中,x的取值范围为x≥2的是( ) A. B. C. D. |
|
下列四种调查: ①调查某班学生的身高情况; ②调查某城市的空气质量; ③调查某风景区全年的游客流量; ④调查某批汽车的抗撞击能力. 其中适合用全面调查方式的是( ) A.① B.② C.③ D.④ |
|
纳米是非常小的长度单位,1纳米=10-9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( ) A.5×10-10米 B.5×10-9米 C.5×10-8米 D.5×10-7米 |
|
-3的绝对值是( ) A.- B. C.-3 D.3 |
|
如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ. (1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示). (2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式. (3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值. (4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值. |
|
如图,在平面直角坐标系中,抛物线y=ax2+bx-2 与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m. (1)求这条抛物线所对应的函数关系式. (2)求点C在这条抛物线上时m的值. (3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN. ①当点D在这条抛物线的对称轴上时,求点D的坐标. ②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值. (参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,)) |
|
探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积. 应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为______. |
|
甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时. (1)分别求线段BC、DE所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长. |
|
某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图. (1)求这n名学生中剩饭学生的人数及n的值. (2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比. (3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数. |
|