若不等式组的解集为x<0,则a的取值范围为( ) A.a>0 B.a=0 C.a<0 D.a=3 |
|
下列计算正确的是( ) A. B.(2a)3=6a3 C.6a-2a=4 D. |
|
|-3|的倒数是( ) A.-3 B. C.3 D. |
|
如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C. (1)求抛物线的函数表达式; (2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标; (3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE. ①判断四边形OAEB的形状,并说明理由; ②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长. |
|
定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等. 理【解析】 如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD. 应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O. (1)求证:△AOB和△AOE是“友好三角形”; (2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积. 探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得 到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积. |
|
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象. (1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为______,其中自变量x的取值范围是______; (2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口? (3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式. |
|
如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E. (1)求证:ON是⊙A的切线; (2)若∠MON=60°,求图中阴影部分的面积.(结果保留π) |
|
身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF; (2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) |
|
在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同) (1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率; (2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次好抽取的卡片上的实数之差为有理数的概率. |
|
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; (2)若CD=,求AD的长. |
|