“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只? (2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算) |
|
如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC. (1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积. |
|
(1)计算:. (2)已知,关于x的方程x2-2mx=-m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值. |
|
如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为 . |
|
如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为 . | |
已知m2-m=6,则1-2m2+2m= . | |
要使式子有意义,则x的取值范围是 . | |
如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断: ①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1. 其中正确的有( ) A.1个 B.2个 C.3个 D.4个 |
|
如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是( ) A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1) |
|
如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是( ) A.BD⊥AC B.AC2=2AB•AE C.△ADE是等腰三角形 D.BC=2AD |
|