如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2-18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处. (1)求线段OA、OC的长; (2)求直线CE与x轴交点P的坐标及折痕CE的长; (3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由. |
|
如图,CD切⊙O于点D,连结OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为15,sin∠COD=. 求:(1)弦AB的长; (2)CD的长; (3)线段DE、线段BE与弧DB围成的面积. |
|
2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了______小时; (2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米? (3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定? |
|
为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36度.根据上面提供的信息,回答下列问题: (1)写出样本容量,m的值及抽取部分学生体育成绩的中位数; (2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
|
|||||||||||||||||||
如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. (1)求证:△ADE≌△BCF; (2)若AD=4cm,AB=8cm,求CF的长. |
|
(1)计算:; (2)先化简,再求值:,其中. |
|
如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是 . |
|
用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,若其中两块木板的边数均为5,则第三块木板的边数为 . | |
有一位同学平时的七次测验成绩分别是(单位:分):80,73,85,69,92,78,90,则这组数据的中位数是 . | |
随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为 . | |