相关试题
当前位置:首页 > 初中数学试题
⊙O的半径为R,若∠AOB=α,则弦AB的长为( )
A.manfen5.com 满分网
B.2Rsinα
C.manfen5.com 满分网
D.Rsinα
已知菱形的周长为40cm,一条对角线长为16cm,那么这个菱形的面积是( )
A.192cm2
B.96cm2
C.48cm2
D.40cm2
如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有( )
manfen5.com 满分网
A.1
B.2
C.3
D.4
现有边长相等的正三角形、正方形、正六边形、正八边形形状的地砖,如果选择其中的两钟铺满平整的地面,那么选择的两种地砖形状不能是( )
A.正三角形与正方形
B.正三角形与正六边形
C.正方形与正六边形
D.正方形与正八边形
若关于x的不等式x-m≥-1的解集如图所示,则m等于( )manfen5.com 满分网
A.0
B.1
C.2
D.3
下列各数中,为负数的是( )
A.-(-manfen5.com 满分网
B.-|manfen5.com 满分网|
C.(-manfen5.com 满分网2
D.|-manfen5.com 满分网|
题型:解答题
难度:中等
一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究 如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.
解决问题:
(1)CQ与BE的位置关系是______,BQ的长是______dm;
(2)求液体的体积;(参考算法:直棱柱体积V=底面积S△BCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=manfen5.com 满分网,tan37°=manfen5.com 满分网
manfen5.com 满分网
拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.
延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3
manfen5.com 满分网
题型:解答题
难度:中等
某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
次数n21
速度x4060
指数Q420100
(1)用含x和n的式子表示Q;
(2)当x=70,Q=450时,求n的值;
(3)若n=3,要使Q最大,确定x的值;
(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-manfen5.com 满分网manfen5.com 满分网
题型:解答题
难度:中等
如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧manfen5.com 满分网分别交OA,OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧manfen5.com 满分网上,当△AOQ的面积最大时,直接写出∠BOQ的度数.

manfen5.com 满分网
题型:解答题
难度:中等
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.

manfen5.com 满分网
共1196510条记录 当前(81517/119651) 首页 上一页 81512 81513 81514 81515 81516 81517 81518 81519 81520 81521 81522 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.