某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误. 回答下列问题: (1)写出条形图中存在的错误,并说明理由; (2)写出这20名学生每人植树量的众数、中位数; (3)在求这20名学生每人植树量的平均数时,小宇是这样分析的: ①小宇的分析是从哪一步开始出现错误的? ②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵. |
|
定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2×(2-5)+1 =2×(-3)+1 =-6+1 =-5 (1)求(-2)⊕3的值; (2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来. |
|
如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1; 将C1绕点A1旋转180°得C2,交x轴于点A2; 将C2绕点A2旋转180°得C3,交x轴于点A3; … 如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= . |
|
如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B= °. | |
若x+y=1,且x≠0,则(x+)÷的值为 . | |
如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是 . | |
如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是( ) A. B. C. D. |
|
如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( ) A.点M在AB上 B.点M在BC的中点处 C.点M在BC上,且距点B较近,距点C较远 D.点M在BC上,且距点C较近,距点B较远 |
|
如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=( ) A.π B.2π C. D.π |
|
一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( ) A.90° B.100° C.130° D.180° |
|