如图,已知矩形ABCD的边则在边AB上存在( )个点P,使∠DPC=90°. A.0 B.1 C.2 D.3 |
|
当分式方程中的a取下列某个值时,该方程有解,则这个a是( ) A.0 B.1 C.-1 D.-2 |
|
下列计算正确的是( ) A.(-2)2=-4 B. C. D. |
|
已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G. (1)如图1,求证:∠EAF=∠ABD; (2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论. |
|
如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C,动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发速度均为1个单位/秒,设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E.过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围; (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PE,QG,当t为何值时,2BQ-PF=QG? |
|
甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务个需多少天? (2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天? |
|
如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE. (1)求证:AB=AC (2)若BD=4,BO=2,求AD的长. |
|
某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2-4. (1)求a的值; (2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积. |
|
春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育,新闻,动画,娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制了如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图; (2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名? |
|
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上. (1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C; (2)请直接写出四边形ABCD的周长. |
|