-的倒数是( ) A.3 B.-3 C.- D. |
|
如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点. (1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标; (3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由. |
|
如图,在⊙O中,半径OC垂直于弦AB,垂足为点E. (1)若OC=5,AB=8,求tan∠BAC; (2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明. |
|
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)线段BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. |
|
在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了______名同学; (2)条形统计图中,m=______,n=______; (3)扇形统计图中,艺术类读物所在扇形的圆心角是______度; (4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理? |
|
为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平? |
|
如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1. (1)求反比例函数的解析式; (2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围. |
|
某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值. |
|
两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹) |
|
先化简,再求值:,其中x=-. |
|