如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为( ) A.8 B.4 C.8 D.6 |
|
三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( ) A.14 B.12 C.12或14 D.以上都不对 |
|
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个 D.4个 |
|
如图是广州市某一天内的气温变化图,根据图,下列说法中错误的是( ) A.这一天中最高气温是24℃ B.这一天中最高气温与最低气温的差为16℃ C.这一天中2时至14时之间的气温在逐渐升高 D.这一天中只有14时至24时之间的气温在逐渐降低 |
|
下列运算正确的是( ) A.a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a•a3=a4 |
|
如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( ) A.50° B.30° C.20° D.15° |
|
若式子在实数范围内有意义,则x的取值范围是( ) A.x≥1 B.x>1 C.x<1 D.x≤1 |
|
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0). (1)求直线BD和抛物线的解析式. (2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标. (3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由. |
|
如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G. (1)求证:CG是⊙O的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求GA的长. |
|
某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件. (1)求这两种商品的进价. (2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少? |
|