矩形OABC在平面直角坐标系中位置如图所示,A、c两点的坐标分别为A(6,0),C(0,3),直线y=-x与BC边相交于D点. (1)若抛物线y=ax2-x经过点A,试确定此抛物线的表达式; (2)在(1)中的抛物线的对称轴上取一点E,求出EA+ED的最小值; (3)设(1)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的点P的坐标. |
|
如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE. (1)求证:DE是⊙O的切线; (2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值. |
|
为加强对学生的社会责任感和爱国主义的教育,某学校团组织在清明节节到来之际计划租用6辆客车送一批团员师生去烈士陵园扫墓.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.
(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元? |
||||||||||
如图,反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2. (1)①点B坐标为______;②S1______S2(填“>”、“<”、“=”); (2)当点D为线段AB的中点时,求k的值及点E坐标; (3)当S1+S2=2时,试判断△ODE的形状,并求△ODE的面积. |
|
如图,△ABC是边长为5的等边三角形,将△ABC绕点C顺时针旋转120°,得到△EDC,连接BD,交AC于F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长. |
|
如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449) |
|
为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成. (1)按此计划,该公司平均每天应生产帐篷______顶; (2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷? |
|
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点): 求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数? (2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围; (3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少? |
|
先化简:;若结果等于,求出相应x的值. |
|
如图,已知⊙P的半径为2,圆心P在抛物线y=-1上运动,当⊙P与x轴相切时,圆心P的坐标为 . |
|