| A型 | B型 | 价格(万元/台) | a | b | 处理污水量(吨/月) | 220 | 180 | 为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元. (1)求a,b的值; (2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金不超过110万元,问每月最多能处理污水多少吨?
|
|
关于二次函数y=2x2-mx+m-2,以下结论:①不论m取何值,抛物线总经过点(1,0);②抛物线与x轴一定有两个交点;③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的顶点在y=-2(x-1)2图象上.上述说法错误的序号是 .
|
|
如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线ln⊥x轴于点(n,0)(n为正整数).函数y=x的图象与直线l1,l2,l3,…,ln分别交于点A1,A2,A3,…,An;函数y=2x的图象与直线l1,l2,l3,…,ln分别交于点B1,B2,B3,…,Bn.如果△OA1B1的面积记作S,四边形A1A2B2B1的面积记作S1,四边形A2A3B3B2的面积记作S2,…,四边形AnAn+1Bn+1Bn的面积记作Sn,那么S1= ,S2= ,S2012= .
|
|
近期随着国家抑制房价新政策的出台,某楼盘房价连续两次下跌,由原来的每平方米10000元降至每平方米8100元,设每次降价的百分率相同,则降价百分率为 .
|
|
已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012= .
|
|
如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限的相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6),且S△DBP=27 (1)求上述一次函数与反比例函数的表达式; (2)求一次函数与反比例函数的另一个交点坐标.
|
|
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b. (1)写出k为负数的概率; (2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)
|
|
先化简,再求值:,其中x=2+.
|
|