下面四个立体图形中,主视图是三角形的是( ) A. B. C. D. |
|
有理数-2的绝对值是( ) A.2 B.-2 C. D. |
|
如图所示,已知二次函数y=ax2+bx-1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,-2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足. (1)求二次函数y=ax2+bx-1(a≠0)的解析式; (2)请直接写出使y<0的对应的x的取值范围; (3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立; (4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由. |
|
△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B. (1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形. (2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论. (3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长. |
|
如图,AC是⊙O的直径,PA是⊙O的切线,A为切点,连接PC交⊙O于点B,连接AB,且PC=10,PA=6. 求:(1)⊙O的半径; (2)cos∠BAC的值. |
|
某居民小区有一朝向为正南的居民楼(如图),该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角是30°时. (1)超市以上的居民住房采光是否有影响,影响多高? (2)若要使采光不受影响,两楼相距至少多少米?(结果保留根号) |
|
如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形. |
|
为保证学生上学安全,学校打算在今年下期采购一批校车,为此,学校安排学生会在全校300名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如图统计图. 走读学生对购买校车的四种态度如下: A.非常希望,决定以后就坐校车上学 B.希望,以后也可能坐校车上学 C.随便,反正不会坐校车上学 D.反对,因家离学校近不会坐校车上学 (1)由图①知A所占的百分比为______,本次抽样调查共调查了______名走读学生,并完成图②; (2)请你估计学校走读学生中至少会有多少名学生乘坐校车上学(即A态度的学生人数). |
|
(1)计算: (2)已知a=-3,b=2,求代数式 的值. |
|
将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,上述记号就叫做2阶行列式.若,则x= . | |