下列语句正确的是( ) A.“上海冬天最低气温低于-5℃”,这是必然事件 B.“在去掉大小王的52张扑克牌中抽13张牌,其中有4张黑桃”,这是必然事件 C.“电视打开时正在播放广告”,这是不可能事件 D.“从由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数能被4整除”,这是随机事件 |
|
在下列方程中,有实数根的是( ) A.x2+3x+1=0 B. C.x2+2x+3=0 D. |
|
如果a>1>b,那么下列不等式正确的个数是( ) ①a-b>0,②a-1>1-b,③a-1>b-1,④. A.1 B.2 C.3 D.4. |
|
下列各数中无理数共有( ) ①-0.21211211121111,②,③,④,⑤. A.1个 B.2个 C.3个 D.4个. |
|
如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动. (1)当点A在x轴上时,求点C的坐标; (2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由; (3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值; (4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式. |
|
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积. |
|
已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数) (1)若方程有两个不相等的实数根,求m的取值范围; (2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点; (3)关于x的一元二次方程(m-1)x2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x2+(m-2)x-1向右平移3个单位长度,求平移后的解析式. |
|
库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元. (1)请填写下表,并求出yA,yB与x之间的函数关系式;
(3)请问怎样调运,才能使两村的运费之和最小?求出最小值. |
|||||||||||||||||
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC. ①求证:CD=AN; ②若∠AMD=2∠MCD,求证:四边形ADCN是矩形. |
|
某学校开展丰富多彩的体育活动,新开设了排球、篮球、羽毛球、体操课,学生可根据自己的爱好任选其中一项.老师根据学生报名情况进行了统计,并绘制了下面不完整的扇形统计图和条形图.请你结合图中的信息,解答下列问题: (1)求该校学生报名占报名数; (2)选排球的人数占报名总人数的百分之几? (3)将条形图补充完整. |
|