已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为( ) A. B. C. D. |
|
如图,在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2cm,则梯形ABCD的面积为( )cm2. A.3 B.6 C.6 D.12 |
|
如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换: ①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格; ②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°; ③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90度. 其中,能将△ABC变换成△PQR的是( ) A.①② B.①③ C.②③ D.①②③ |
|
用若干辆载重量为6吨的货车运一批货物,若每辆汽车只装4吨,则剩下18吨货物;若每辆汽车只装6吨,则最后一辆货车装的货物不足5吨.若设有x辆货车,则x应满足的不等式组是 . | |
若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是( ) A.40° B.80° C.120° D.150° |
|
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (-15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC重合.得到△ACD. (1)求直线AC的解析式; (2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长; (3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. |
|
某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系. (1)求y与x的函数关系式; (2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少? (3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字) |
|
如图,将△ABC纸片沿MN折叠后点C与点A恰好重合,设∠C=22.5°,AD⊥BC于点D.过点N作NE⊥AB于点E,并且交AD于点F,求证:DB=DF. |
|
如图,AB是⊙O的直径,C是⊙O上一点,∠CAB=30°,在AB的延长线上取一点P,使得PB=AB,试判断直线PC与⊙O的位置关系,并说明理由. |
|
现有分别标有1,2,3,4的四张扑克:(1)同时从中任取两张,猜测两数和为奇数的机会;(2)先从中任取一张,放回后搅匀再取一张,猜测两数和为奇数的机会.小明说(1)(2)中和为奇数的机会均等;小刚说(1)(2)中和为数的机会不均等,你认为他们俩谁的判断正确?请用画树状图或列表的方法说理. |
|