如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为( ) A.(2,1) B.(-2,1) C.(-2,-1) D.(2,-l) |
|
二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( ) A. B. C. D. |
|
已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个 |
|
下列调査,适合用普査方式的是( ) A.了解一批炮弹的杀伤半径 B.了解扬州电视台《关注》栏目的收视率 C.了解长江中鱼的种类 D.了解某班学生对“扬州精神”的知晓率 |
|
下列四幅图形中,表示两颗圣诞树在同一时刻阳光下的影子的图形可能是( ) A. B. C. D. |
|
平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( ) A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3) |
|
下列四个角中,最有可能与70°角互补的角是( ) A. B. C. D. |
|
4的平方根是( ) A.2 B.16 C.±2 D.±16 |
|
如图,已知动圆A始终经过定点B(0,2),圆心A在抛物线上运动,MN为⊙A在x轴上截得的弦(点M在N左侧) (1)当A(,a)时,求a的值,并计算此时⊙A的半径与弦MN的长. (2)当⊙A的圆心A运动时,判断弦MN的长度是否发生变化?若改变,举例说明;若不变,说明理由. (3)连接BM,BN,当△OBM与△OBN相似时,计算点M的坐标. |
|
如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=xcm(x>0),四边形BCDP的面积为ycm2. (1)求y关于x的函数关系式; (2)当x为何值时,△PBC的周长最小,并求出此时y的值. |
|