如图,已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C. (1)若点D坐标是(-8,0),求A、B两点坐标及k的值. (2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式. (3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值. |
|
如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°. (1)求垂直支架CD的长度;(结果保留根号) (2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:≈1.414,≈1.73) |
|
我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)本次调查中,张老师一共调査了______名同学,其中C类女生有______名,D类男生有______名; (2)将上面的条形统计图补充完整; (3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. |
|
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (1)求证:△ACD≌△BCE; (2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长. |
|
先化简,再求值:,其中a=. |
|
如图在平行四边形ABCD中,点E在CD边上运动(不与C、D两点重合),连接AE并延长与BC的延长线交于点F.连接BE、DF,若△BCE的面积是8,则△DEF的面积为 . |
|
如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中点A的坐标为(1,1).若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,则a的值为 . | |
如图直线l1:y=x-1与l2:y=ax+b的交点在y轴上,则不等式的解集为 . |
|
如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=30°,则∠α的度数为 . |
|
若二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2= . |
|