小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况.他们作了如下分工:小明负责找值为1时x的值,小亮负责找值为0时x的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( ) A.小明认为只有当x=2时,x2-4x+5的值为1 B.小亮认为找不到实数x,使x2-4x+5的值为0 C.小梅发现x2-4x+5的值随x的变化而变化,因此认为没有最小值 D.小花发现当x取大于2的实数时,x2-4x+5的值随x的增大而增大,因此认为没有最大值 |
|
抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是( ) A.①② B.②③ C.②④ D.③④ |
|
已知⊙O1与⊙O2内切,它们的半径分别为2和3,则这两圆的圆心距d满足( ) A.d=5 B.d=1 C.1<d<5 D.d>5 |
|
如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是( ) A.1 B. C. D. |
|
如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形? (3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. |
|
如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2. (1)求证:四边形AO1BO2是菱形; (2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2O2D; (3)在(2)的条件下,若△AO2D的面积为1,求△BO2D的面积. |
|
某中学库存960套旧桌凳,修理后捐助贫困山区学校现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元. (1)求甲、乙两个木工小组每天各修桌凳多少套? (2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明. |
|
在平面直角系中,已知△ABC和△DEF的顶点分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图: (1)画出△ABC以点O为位似中心,在y轴异侧放大2倍后得到的△A1B1C1,并写出点C1的坐标; (2)画出△A1B1C1关于x轴的对称图形△A2B2C2.并写出点C2的坐标; (3)指出△A2B2C2经过哪些变换,可以与△DEF拼成一个正方形. |
|
某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题: (1)在这次考察中一共调查了多少名学生? (2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)补全条形统计图; (4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人? |
|
计算 (1); (2). |
|