下列等式成立的是( ) A.x2•x3=x6 B.x3+x3=x6 C.(x2)3=x6 D.(2x3)2=2x6 |
|
-2012的相反数是( ) A.-2012 B.2012 C. D. |
|
如图1,抛物线y=mx2-11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°. (1)填空:OB=______,OC=______; (2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式; (3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值. |
|
如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动. (1)当点A在x轴上时,求点C的坐标; (2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由; (3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值; (4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式. |
|
一个反比例函数的图象经过点A(1,3),O是原点, (1)求该反比例函数解析式; (2)点B是反比例函数图象上一点,过点B做BC⊥x轴于C,做BD⊥y轴于D,四边形OCBD的周长为8,求OB长. |
|
某商店准备进一批小电风扇,单价成本价40元,经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个;反之,定价每下降1元,销售量将增加10个. (1)设定价增加x元,则增加后的单件利润是______元,销售量为______个; (2)若商店预计获利2000元,在尽可能让利给顾客的前提下,定价应调整为多少元?请说明理由. |
|
如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D. (1)求证:△ABC∽△BDC. (2)若AC=8,BC=6,求△BDC的面积. |
|
如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1; (2)写出A1、C1的坐标; (3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π). |
|
在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀. (1)随机地从袋中摸出1只球,则摸出白球的概率是多少? (2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率. |
|
(1)计算:|-1|++(-3.14)-()-1. (2)解方程:2x2-6x-1=0. (3)如图,在平行四边形ABCD中,E为BC中点,AE和延长线与DC的延长线相交于点F.证明:△ABE≌△FCE. |
|