在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2. (1)求直线AC及抛物线的函数表达式; (2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标; (3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切. |
|
我们知道连接三角形两边中点的线段叫做三角形的中位线;通过证明可以得到“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似三角形中位线,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图在梯形ABCD中,AD∥BC,点E,F分别是AB、CD的中点,观察EF的位置,联想三角形中位线的性质,你能发现梯形的中位线有什么性质?证明你的结论. (2)如果点E分线段AB为=,EF∥BC交CD于F,AD=3,BC=5,请你利用第(1)的结论求出EF=______(直接填写结果); (3)如果点E分线段AB为=,EF∥BC交CD 于F,AD=a,BC=b,求EF的长. |
|
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示. (1)填空:A、C两港口间的距离为______km,a=______; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围. |
|
如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA、PB、PC、PD. (1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明; (2)在(1)的条件下,若cos∠PCB=,求PA的长. |
|
师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求: (1)徒弟平均每天组装多少辆摩托车(答案取整数)? (2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同? |
|
如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.求一次函数与反比例函数的解析式. |
|
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC. (1)求证:BE=DG; (2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论. |
|
果农老张进行桃树科学管理试验.把一片桃树林分成甲、乙两部分,甲地块用新技术管 理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取40棵桃树,根据每棵树的产量把桃树划分成A,B,C,D,E五个等级(甲、乙两地块的桃树等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下: (1)补齐直方图,求a的值及相应扇形的圆心角度数; (2)选择合适的统计量,比较甲乙两地块的产量水平.并说明试验结果; (3)若在甲地块随机抽查1棵桃树,求该桃树产量等级是B级的概率. |
|
先化简:;若结果等于,求出相应x的值. |
|
在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于 . | |