如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( ) A.∠1 B.∠2 C.∠4 D.∠5 |
|
-2的绝对值是( ) A.-2 B.- C.2 D. |
|
如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. |
|
如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2-10ax的顶点在△ABM内部(不包括边),求a的取值范围. |
|
一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究. 解读信息: (1)甲,乙两地之间的距离为______km; (2)线段AB的解析式为______;线段OC的解析式为______; 问题解决: (3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象. |
|
如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC. (1)求证:∠PAC=∠B,且PA•BC=AB•CD; (2)若PA=10,sinP=,求PE的长. |
|
某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W1,W2,W3表示)、三个化学物实验题(题签分别用代码H1、H2、H3表示),二个生物实验题(题签分别用代码S1,S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签. (1)请你用画树状图的方法,写出他恰好抽到H2的情况; (2)求小亮抽到的题签代码的下标(例如“W2”的下标为“2”)之和为7的概率是多少? |
|
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2. (1)在网格中画出△A1B1C1和△A1B2C2; (2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算) |
|
“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a2-b2=bc. 下面给出小楠对其中一种特殊情形的一种证明方法. 已知:如图2,在△ABC中,∠A=90°,∠B=45°. 求证:a2-b2=bc. 证明:如图2,延长CA到D,使得AD=AB. ∴∠D=∠ABD, ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90° ∴∠D=45°,∵∠ABC=45°, ∴∠D=∠ABC,又∠C=∠C ∴△ABC∽△BCD ∴,即 ∴a2-b2=bc 根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以): 已知:如图1,在△ABC中,∠A=2∠B. 求证:a2-b2=bc. |
|
一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈,tan21.3°≈,sin63.5°≈,tan63.5°≈2) |
|