如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是( ) A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8 |
|
如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( ) A.2个 B.3个 C.4个 D.5个 |
|
抛物线y=-6x2可以看作是由抛物线y=-6x2+5按下列何种变换得到( ) A.向上平移5个单位 B.向下平移5个单位 C.向左平移5个单位 D.向右平移5个单位 |
|
已知点P(a,a-1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为( ) A. B. C. D. |
|
若|m+2|+(n-1)2=0,则2m+n的值为( ) A.-4 B.-1 C.-3 D.4 |
|
方程x(x-1)=0的解是( ) A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 |
|
下列运算正确的是( ) A.2a+a=2a2 B.(-a)2=-a2 C.(a2)3=a5 D.a3÷a=a2 |
|
-的绝对值是( ) A.-2 B.- C.2 D. |
|
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D. (1)直接写出A、B、C三点的坐标和抛物线的对称轴; (2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m; ①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形? ②设△BCF的面积为S,求S与m的函数关系式. |
|
在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N. (1)如图1,当点M在AB边上时,连接BN: ①求证:△ABN≌△ADN; ②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值. (2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形. |
|