通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是( ) A.(a+b)元 B.(a-b)元 C.(a+5b)元 D.(a-5b)元 |
|
如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( ) A.60° B.50° C.40° D.30° |
|
下列调查中,适宜采用抽样方式的是( ) A.调查我市中学生每天体育锻炼的时间 B.调查某班学生对“五个重庆”的知晓率 C.调查一架“歼20”隐形战机各零部件的质量 D.调查广州亚运会100米参赛运动员兴奋剂的使用情况 |
|
如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( ) A.60° B.50° C.45° D.40° |
|
下列图形中,是中心对称图形的是( ) A. B. C. D. |
|
计算(a3)2的结果是( ) A.a B.a5 C.a6 D.a9 |
|
在-6,0,3,8这四个数中,最小的数是( ) A.-6 B.0 C.3 D.8 |
|
如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B--C--E的方向运动,到点E停止;动点Q沿B--C--E--D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形) 解答下列问题: (1)当x=2s时,y=______cm2;当x=s时,y=______cm2. (2)当5≤x≤14 时,求y与x之间的函数关系式. (3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值. (4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值. |
|
某中学库存960套旧桌凳,修理后捐助贫困山区学校现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元. (1)求甲、乙两个木工小组每天各修桌凳多少套? (2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明. |
|
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原. (1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______ |
|