已知椭圆的离心率为,椭圆上一点P到两焦点距离之和为12,则b=( ) A.8 B.6 C.5 D.4
|
|
椭圆的离心率为( ) A. 1 B. C. D.
|
|
命题“若a2+b2=0,则a=0且b=0”的逆否命题是( ) A.若a2+b2≠0,则a≠0且b≠0 B.若a2+b2≠0,则a≠0或b≠0 C.若a=0且b=0,则a2+b2≠0 D.若a≠0或b≠0,则a2+b2≠0
|
|
命题“”的否定是( ) A. B. C. D.
|
|
已知函数. (1)求不等式的解集; (2)正数满足,证明:.
|
|
在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程; (2)设点的极坐标为,点在曲线上,求面积的最大值.
|
|
已知函数,其中,为自然对数的底数. (Ⅰ)设是函数的导函数,求函数在区间上的最小值; (Ⅱ)若,函数在区间内有零点,求的取值范围
|
|
已知等差数列满足,.设正项等比数列的前项和为,且,. (1)求数列、的通项公式; (2)设,数列的前项和为,求.
|
|
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题: (1)某会员仅消费两次,求这两次消费中,公司获得的平均利润; (2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.
|
|||||||||||||||||||||||||
已知正方形ABCD,E,F分别为AB,CD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为. (1)证明:点A在平面BCDE内的射影G在直线EF上; (2)求角的正弦值.
|
|