在直角梯形中,,,,为的中点,如图1.将沿折到的位置,使,点在上,且,如图2. (1)求证:⊥平面; (2)求二面角的正切值.
|
|
已知双曲线C和椭圆有公共的焦点,且离心率为. (1)求双曲线C的方程. (2)经过点M(2,1)作直线l交双曲线C于A,B两点,且M为AB的中点,求直线l的方程并求弦长.
|
|
如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点. (Ⅰ)证明:EF∥平面PAD; (Ⅱ)求三棱锥E—ABC的体积V.
|
|
已知函数f(x)=x3+ax2+bx+c在x与x=1时都取得极值,求a,b的值与函数f(x)的单调区间.
|
|
若A,B分别是椭圆E:(m>1)短轴上的两个顶点,点P是椭圆上异于A,B的任意一点,若直线AP与直线BP的斜率之积为,则椭圆E的离心率为_____.
|
|
已知抛物线的方程为, 为坐标原点, , 为抛物线上的点,若为等边三角形,且面积为,则的值为__________.
|
|
设,当x∈[﹣1,2]时,恒成立,则实数的取值范围为 .
|
|
曲线f(x)=x2+x﹣2ex在点(0,f(0))处的切线的方程为_____.
|
|
若函数,且0<x1<x2<1,设,则a,b的大小关系是( ) A.a>b B.a<b C.a=b D.b的大小关系不能确定
|
|
已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为( ) A.12π B.36π C.72π D.108π
|
|