“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( ) A.m B.0<m<1 C.m>0 D.m>1 |
|
已知f(x)=sin(ωx+)(ω>0)的图象与y=-1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 |
|
已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ) A.4 cm3 B.5 cm3 C.6 cm3 D.7 cm3 |
|
复数的虚部为( ) A.-4 B.4 C.4i D.-4i |
|
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( ) A.-4 B.4 C.-6 D.6 |
|
已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3…), (1)求{an}的通项公式; (2)设bn=,求{bn}的前n项和Tn; (3)在(2)的条件下,对任意n∈N*,Tn>都成立,求整数m的最大值. |
|
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12. (1)求数列{an}的通项公式; (2)令bn=anxn(x∈R),求数列{bn}前n项和的公式. |
|
某专卖店销售一新款服装,日销售量(单位为件)f (n)与时间n(1≤n≤30、n∈N*)的函数关系如下图所示,其中函数f (n)图象中的点位于斜率为5和-3的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大. (Ⅰ)求f (n)的表达式,及前m天的销售总数; (Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过400件时,市面上会流行该款服装,而日销售量连续下降并低于30件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过10天?请说明理由. |
|
一个等差数列前12项的和为354,前12项中偶数项的和与奇数项的和的比为32:27,求公差d. |
|
已知数列{an}的前n项和Sn=10n-n2(n∈N*),又bn=|an|(n∈N*),求{bn}的前n项和Tn. |
|