已知f(x)是R上的奇函数,且f(x+2)=-f(x),当x∈(0,2),f(x)=2x2,则f(11)等于( ) A.-5 B..-4 C..-3 D..-2 |
|
向量,有||=1,||=3,、的夹角为60°,则•(+)=( ) A.1 B. C.2 D. |
|
若复数,则z的实部为( ) A.-2 B.-1 C.1 D.2 |
|
设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( ) A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥α C.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m |
|
命题“∀x∈R,x2-2x+3≤0”的否定是( ) A.∀x∈R,x2-2x+3≥0 B.∃x∈R,x2-2x+3>0 C.∀x∈R,x2-2x+3≤0 D.∃x∉R,x2-2x+3>0 |
|
不等式的解集是( ) A.(-1,2] B.(-∞,-1]∪(2,+∞) C.[-1,2) D.[-2,1] |
|
若集合A={1,2,3},B={x|x-2≤0},则A∩B等于( ) A.{1} B.{1,2} C.{1,2,3} D.∅ |
|
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=. (I)写出直线l的参数方程; (II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积. |
|
已知f(x)=ax-lnx(x∈(0,e]),其中e是自然常数,a∈R (Ⅰ)当a=1时,求f(x)的单调区间和极值; (Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由. |
|
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (Ⅰ)求证:AF∥平面BCE; (Ⅱ)求证:平面BCE⊥平面CDE. |
|