某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车? (Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? |
|
已知函数f(x)=(1+cotx)sin2x-2sin(x+)sin(x-). (1)若tanα=2,求f(α); (2)若x∈[,],求f(x)的取值范围. |
|
已知函数f(x)=(a>0,a≠1,a为常数,x∈R). (1)若f(m)=6,求f(-m)的值; (2)若f(1)=3,求f(2)的值. |
|
不等式f(x)=的定义域为集合A,关于x的不等式R)的解集为B,求使A∩B=B的实数a取值范围. |
|
给出下列命题: ①函数y=cos是奇函数; ②存在实数α,使得sinα+cosα=; ③若α、β是第一象限角且α<β,则tanα<tanβ; ④x=是函数y=sin的一条对称轴方程; ⑤函数y=sin的图象关于点成中心对称图形. 其中命题正确的是 (填序号). |
|
把函数y=sinx(x∈R)的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是 . | |
集合A={a,b},B={1,2},则从集合A到集合B的映射有 个. | |
已知函数f(x)=(0<a<1),则f(x)的单调递增区间为 . | |
若“x2>1”是“x<a”的必要不充分条件,则a的最大值为 . | |
已知,则tanα= . | |