下列说法: ①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适; ②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好; ③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好. 其中说法正确的个数为( ) A.0个 B.1个 C.2个 D.3个 |
|
证明: (1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2, (2)已知a,b,c∈R+,且a+b+c=1,求证:. |
|
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点,直线(参数t∈R)与曲线C的极坐标方程为ρsin2θ=4cosθ. (1)求直线l与曲线C的普通方程; (2)设直线L与曲线C相交于A,B两点,求证:. |
|
选修4-1:几何证明选讲 如图,BA是⊙O的直径,AD是切线,BF、BD是割线, 求证:BE•BF=BC•BD. |
|
已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1. (1)求曲线C的方程; (2)过点P(2,2)的直线与曲线C交于A、B两点,设.当△AOB的面积为时(O为坐标原点),求λ的值. |
|
已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围. |
|
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点. (Ⅰ)求证:A1D⊥平面BB1C1C; (Ⅱ)求证:AB1∥平面A1DC; (Ⅲ)求二面角D-A1C-A的余弦值. |
|
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn. (1)求a4及Sn; (2)令(n∈N*),求数列{bn}的前n项和Tn. |
|
已知向量,x∈R.函数. (1)求函数f(x)的最小正周期; (2)求函数f(x)在区间上的最大值和最小值. |
|
若圆x2+y2-4x-4y-10=0上恰有三个不同的点到直线l:y=kx的距离为2,则k= . | |