已知f(x)=ax+lnx,x∈(0,e],,其中e=2.71828…是自然对数的底数,a∈R. (1)若a=-1,求f(x)的极值; (2)求证:在(1)的条件下,; (3)是否存在实数a,使f(x)的最大值是-3,如果存在,求出a的值;如果不存在,说明理由. |
|
如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm. (1)按下列要求建立函数关系式: (i)设∠BAO=θ(rad),将y表示成θ的函数; (ii)设OP=x(km),将y表示成x的函数; (2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短. |
|
点P是椭圆16x2+25y2=1600上一点,F1、F2是椭圆的两个焦点,又知点P在x轴上方,F2为椭圆的右焦点,直线PF2的斜率为:求△PF1F2的面积. |
|
已知O是△ABC内任意一点,连接AO,BO,CO并延长交对边于A′,B′,C′,则,这是平面几何中的一个命题,其证明方法常采用“面积法”:.运用类比猜想,对于空间四面体存在什么类似的命题?并用“体积法”证明. |
|
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(2)如果y对x有线性相关关系,求回归直线方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001.参考数据:,16×11+14×9+12×8+8×5=438,162+142+122+82=660,112+92+82+52=291). |
|||||||||||
当实数m取何值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点 (1)位于第四象限? (2)位于第一、三象限? (3)位于直线y=x上? |
|
已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R= . | |
已知曲线C1,C2的极坐标方程分别为ρcosθ=3,,则曲线C1与C2交点的极坐标为 . | |
从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n个等式为 . | |
若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的范围为 . | |