相关试题
当前位置:首页 > 高中数学试题
已知二次函数f(x)=-2x2+2x,数列{an}满足an+1=f(an).
(1)试写出一个区间(a,b),使得当a1∈(a,b)时,数列{an}在这个区间上是递增数列,并说明理由;
(2)令manfen5.com 满分网,试证明数列{lgbn+lg2}是等比数列
(3)已知,记Sn=manfen5.com 满分网,是否存在非零整数λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1对任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,请说明理由.
manfen5.com 满分网设b>0,椭圆方程为manfen5.com 满分网,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1B1C1D1,且这个几何体的体积为manfen5.com 满分网
(1)求棱A1A的长;
(2)若线段AC与BD交于点E,求证:D1E∥平面A1C1B;
(3)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,指出线段C1P的长,如果不存在,请说明理由.

manfen5.com 满分网
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米.
(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

manfen5.com 满分网
某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.
在△ABC中,角A,B,C所对的边分别为a,b,c,向量manfen5.com 满分网,n=(sinA,-1),且m⊥n.
(Ⅰ)求角A的大小;(Ⅱ)若a=2,manfen5.com 满分网,求b的值.
如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=   
manfen5.com 满分网
(坐标系与参数方程选做题)已知圆C的极坐标方程ρ=2cosθ,则圆C上点到直线l:ρcosθ-2ρsinθ+7=0的最短距离为   
如图,是某四棱锥的三视图,则该几何体的表面积为   
manfen5.com 满分网
已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为   
共1028964条记录 当前(80932/102897) 首页 上一页 80927 80928 80929 80930 80931 80932 80933 80934 80935 80936 80937 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.