已知sinθ=,且θ在第二象限,那么2θ在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( ) A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1} |
|
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x. (1)求函数g(x)在区间(0,e]上的值域; (2)是否存在实数a,对任意给定的x∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由. (3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x,y)(其中总能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由. |
|
如图,已知A是椭圆上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|. (1)求椭圆的离心率; (2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标. |
|
已知数列{an}满足(n∈N*),. (1)求{an}的通项公式; (2)若且,求证:c1+c2+…+cn<n+1. |
|
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,,A1C=CA=AB=a,AB⊥AC,D为AA1中点. (1)求证:CD⊥面ABB1A1; (2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为. |
|
为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图), 已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12. (1)求该校报考飞行员的总人数; (2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望. |
|
在△ABC中,角A,B,C的对边分别为a,b,c,且满足. (Ⅰ)求角A的大小; (Ⅱ)若,求△ABC面积的最大值. |
|
关于x的不等式的解集是 . | |
已知在极坐标系下,点是极点,则A,B两点间的距离|AB|= ;△AOB的面积等于 . | |