如图,已知中心在原点O、焦点在x轴上的椭圆C的离心率为,点A、B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求•的最小值. |
|
(理)设椭圆的两个焦点是F1(-c,0)、F2(c,0)(c>0),且椭圆上存在点M,使. (1)求实数m的取值范围; (2)若直线l:y=x+2与椭圆存在一个公共点E,使得|EF1|+|EF2|取得最小值,求此最小值及此时椭圆的方程; (3)是否存在斜率为k(k≠0)的直线l,与条件(Ⅱ)下的椭圆交于A、B两点,使得经过AB的中点Q及N(0,-1)的直线NQ满足?若存在,求出k的取值范围;若不存在,说明理由. |
|
(文)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两根,且a1=1. (1)求数列和{bn}的通项公式; (2)设Sn是数列{an}的前n项和,问是否存在常数λ,使得bn-λSn>0对任意n∈N*都成立,若存在,求出λ的取值范围; 若不存在,请说明理由. |
|
设数列{an}的各项都是正数,a1=1,,bn=an2+an. (1)求数列{bn}的通项公式; (2)求数列{an}的通项公式; (3)求证:<1. |
|
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2. (1)分别求出ξ取得最大值和最小值时的概率; (2)求ξ的分布列及数学期望. |
|
如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知 (Ⅰ)求证:C1B⊥平面ABC; (Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1; (Ⅲ)在(Ⅱ)的条件下,AB=,求二面角A-EB1-A1的平面角的正切值. |
|
已知函数,且给定条件p:“”, (1)求f(x)的最大值及最小值 (2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围. |
|
已知函数f(x)=sin(2x-)+2sin2(x-) (x∈R). (1)求函数f(x)的最小正周期; (2)求使函数f(x)取得最大值的x的集合. |
|
在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,类比这一结论,推广到空间:在四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S= . | |
如图是一程序框图,若输入f(x)=sinx,则输出的f(x)= . |
|